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Abstract

This work proposes a new technique to estimate cable tension force from measured natural frequencies. The proposed

method is able to simultaneously identify tension force, flexural rigidity, and axial rigidity of a cable system. Firstly, a finite

element model that can consider both sag-extensibility and flexural rigidity is constructed for a target cable system. Next, a

frequency-based sensitivity-updating algorithm is applied to identify the model. The proposed approach is applicable to a

wide range of a cable system that is beyond the applicable limits of the existing methods. From the experimental works, it is

seen that the tension force is determined with an accuracy of 3% by the proposed approach. Furthermore, it is observed

that the flexural rigidity of cable with high bending stiffness is proportional to the applied tension force.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Modern advances in material, analysis, and construction technology have resulted in increasing number of a
long-span cable bridge. Since cables are a crucial element for overall structural safety of the structure, the
accurate measurement of cable tension force has practical importance to not only a construction stage but also
a maintenance stage. Currently available techniques to estimate the cable tension include the static methods
directly measuring the tension by a load cell or a hydraulic jack, and the vibration methods indirectly
estimating the tension from measured natural frequencies. In practice, the vibration methods have received
increasing attention because of its simplicity and speediness.

Depending on whether the sag-extensibility and bending stiffness are taken into account or not, the existing
vibration methods may be classified as the following four categories. The first category utilizes the flat taut
string theory that neglects both sag-extensibility and bending stiffness:
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where fn denotes the nth natural frequency in Hz. The terms T, m, and L denote tension force, mass density,
and length of cable, respectively. Given the measured frequency and the mode number, the computation of
tension force is straightforward. However, the application of this formula is strictly limited to a flat long
slender cable. The second category makes use of the modern cable theory [1–3] that takes account of
the sag-extensibility without bending stiffness. This approach requires additional information of the
unstrained length of cable and involves solving a nonlinear characteristic equation by trial-and-error [4].
However, such additional information is often not available in practice. The third category utilizes the
following frequency formula of an axially loaded beam that considers the bending stiffness but neglects the
sag-extensibility:

f n

n

� �2

¼
1

4mL2

� �
T þ

n2p2

4mL4

� �
EI , (2)

where EI denotes the flexural rigidity of a cable. Given the measured frequency and the mode number, the
linear regression procedures are applied to identify unknown tension force and flexural rigidity
simultaneously. This approach is often used by the field engineers because of its simplicity and speediness.
The last category takes account of both sag-extensibility and bending stiffness using a practical formula [5–7].
For the proper use of the proposed formula, a priori knowledge of the axial rigidity and flexural rigidity of the
target cable system is required. However, in practice, the flexural rigidity of cable is often neither available nor
valid since the shear and bending mechanisms of a cross section of a cable could be different from those
of a beam.

The aforementioned vibration methods have at least the following three shortcomings related to their
applicable limits. First, the existing vibration methods are based on a closed form relationship between cable
tension force and the natural frequencies for a simple mathematical model. Hence, it is not surprising to get
accurate estimation of tension force if the target cable system is well represented by the model.
However, the estimation result may be significantly distorted if the model could not accurately
describe the behavior of the target cable system. For instance, the application of the taut string theory in
Eq. (1) to a cable with high sag and high bending stiffness does not guarantee the good results of the estimated
cable tension force. Neither does the application of the modern cable theory to a short thick cable such as the
tie-rod of an arch bridge. In general, the influence of cable extensibility is negligible for short thick cables but
could lead to important errors for long sagged cables [8]. Here, the short thick cables belong to a class of
cables that is not slender or not sufficiently tensioned. For such short thick cables, the higher natural
frequencies are greater than predicted by the taut string theory, as shown in Tsing Ma Bridge [9]. Second, the
existing vibration methods may not be applicable to the cable system whose analytical solution is not known.
For instance, the existing vibration methods may not be applicable to the inclined double short hanger of a
suspended bridge that consists of two independent cables tied by a clamp and a spacer.
Although an application of Eq. (2) to cables with a transverse connector is found [10], such an application
is strictly limited to relatively long cables of which the tied-effects are negligible. Third, some vibration
methods require not only the measured frequencies but also additional information such as cable effective
length and material parameters. However, such additional information that affects accuracy of the resulting
tension force is often not available in practice. Therefore, there remains a need to resolve these deficiencies of
the existing vibration methods.

The objective of this paper is to introduce a new technique that can estimate cable tension force from
measured natural frequencies. The proposed approach resolves the aforementioned deficiencies of the earlier
approaches by using a finite element analysis technique and applying a system identification technique [11].
Here, the finite element analysis is adopted in order to extend the applicable limits on geometric complexity of
a target cable system, and the state-of-the-art system identification technique is applied in order to overcome
the required knowledge of material properties and static shapes of cables. To achieve the objective, the
following three tasks are performed. First, the approach to estimate cable tension force from the measured
natural frequencies is outlined. Second, a set of numerical comparative study is conducted to examine the
accuracy of the proposed approach. Third, the feasibility and practicability of the proposed approach are
examined by the laboratory experiments and a field application.
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2. Theory

Suppose that the mass density and boundary condition of a cable are known. Given the measured natural
frequencies, this paper deals with the problem how to identify the horizontal component of tension force,
flexural rigidity, and axial rigidity of a cable system. Note that the horizontal force, instead of tension force, is
selected for an identification variable. The reason is attributed to the fact that the horizontal force is a constant
while the derivatives of tension force cannot be neglected for a large-sagged cable. In addition, the reason for
selecting the flexural rigidity and axial rigidity of a cable is that such material properties are often unavailable
or invalid in some practical cases. For instance, the shear and bending mechanism of a cable element may not
be the same with that of a continuum structure because the cross section of most structural cables consists of
individual strands or wires. Also, Ni et al. [9] shows that the flexural rigidity significantly affects the higher
frequencies of a large-diameter sagged cable.

Consider a p� 1 identification variable vector U that consists of the horizontal force H, the flexural rigidity
EI, and the axial rigidity EA:

U ¼ H EI EA
� �T

. (3)

Then, the nth eigenvalue bn can be described by a function of the identification variable vector. The Taylor
expansion of the nth eigenvalue with respect to the identification variable vector is as follows:

bnðUþ dUÞ ¼ bnðUÞ þ rbnðUÞ � dUþO2ðdUÞ. (4)

By neglecting the higher order term, the variation of eigenvalue dbn can be defined by

dbn � bnðUþ dUÞ � bnðUÞ. (5)

Then the variation of eigenvalue can be described by

dbn ¼
Xp

i¼1

qbn

qUi

dUi, (6)

where Ui denotes the ith item of U. For example, U1 denotes the horizontal force H. For numerical efficiency,
Eq. (6) can further be normalized by

dbn

bn

¼
Xp

i¼1

qbn

qbi

Ui

bn

dUi

Ui

. (7)

If the number of measured natural frequencies is q, Eq. (7) can be conveniently written by

Z ¼ Fa, (8)

where the q� 1 vector Z is the variation of eigenvalue denoted by

Z ¼
db1
b1
� � �

dbq

bq

" #T
. (9)

The p� 1 vector a is the fractional changes in the identification variables denoted by

a ¼
dU1

U1
� � �

dUp

Up

" #T
. (10)
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The q� p vector F is the sensitivity matrix denoted by

F ¼

qb1
qU1

U1

b1
� � �

qb1
qUp

Up

b1

..

. . .
. ..

.

qbq

qU1

U1

bq

� � �
qbq

qUp

Up

bq

2
66666664

3
77777775
. (11)

The iterative solution procedure of Eq. (8) consists of the following seven steps. First, assume an arbitrary
identification variable vector at the kth iteration step:

Uk ¼ Hk EIk EAk
� �T

, (12)

where the superscript denotes the iteration number. Second, compute a static profile and the distribution of
tension force caused by the self-weight of the cable. For a cable system with high sag and high bending
stiffness, a nonlinear finite element analysis is required [9]. If the sag-to-span ratio of the cable is less than 1/8,
the desired static profile could be readily approximated by the parabola with sufficient accuracy [1]. Third,
perform the eigenvalue analysis for the resulting deformed and stressed cable. Fourth, compute the sensitivity
matrix F in Eq. (11) by approximation. Here, the p times eigenvalue analyses are required for a unit change of
Ui. Fifth, compute the fractional change of eigenvalue Z by using the following equation:

Z ¼
bt
1 � bk

1

bk
1

� � �
bt

n � bk
n

bk
n

� � �
bt

q � bk
q

bk
q

2
4

3
5
T

, (13)

where bt
n denotes the nth measured target eigenvalue. bk

n denotes the nth eigenvalue at the kth iteration step
resulted from the third step above. Sixth, compute the fractional changes in the identification variables by
using the following equation:

a ¼ F�1Z, (14)

where F�1 denotes a pseudo inverse matrix of F that can be approximated by

F�1 ¼ lim
e!0

FTFþ e
� ��1

FT. (15)

Eq. (8) is supposed to be over-determined (poq). Since the pseudo-inverse solution in Eq. (14) is based on a
least-square technique, the number of measured modes should be larger than that of the identification
variables in order to avoid the uniqueness problem [12]. Seventh, update the identification variables of the
(k+1)th iteration step by

Ukþ1
i ¼ ð1þ ak

i ÞU
k
i , (16)

where Uk
i denotes the ith identification variable of Uk at the kth iteration step, and ak

i denotes the ith element
of a at the kth iteration step. These seven steps are repeated until the fractional changes of the identification
variable ai converge to zeros.
3. Numerical study

Consider an inclined cable with two hinged ends shown in Fig. 1. The mass density per unit length of the
cable m is 400 kg/m. The horizontal span length l is 100m. The angle of the cord y is 301. The sag-extensibility
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Fig. 1. Inclined cable.

Table 1

Structural properties of four inclined cables

Cable no. l2 x H (MN) E (GPa) A (� 10�3m2) I (� 10�6m4)

1 0.68 605.5 2.9036 15.988 7.8507 4.9535

2 44.00 302.7 0.7259 17.186 7.6110 4.6097

3 1.22 50.5 26.1325 20826. 7.8633 4.9204

4 44.00 50.5 0.7259 0.048 273.45 5950.6
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parameter l2 and bending stiffness parameter of a cable x is defined by [1]

l2 ¼
mgl sec y

H

� �2
EA

H

l

Le

,

where

Le ¼ l sec3 y 1þ
1

8

mgl

H

� �2
" #

, (17)

x ¼ l

ffiffiffiffiffiffi
H

EI

r
. (18)

The proposed method is applied to the four cables in Table 1. For comparison, the cable properties of the
chosen cables are similar to those of the horizontal cables used in Refs. [7,9]: Cable 1 represents a cable with
moderate sag and low bending stiffness; Cable 2 represents a cable with very high sag and average bending
stiffness; Cable 3 represents a cable with moderate sag and high bending stiffness; Cable 4 represents a cable
with high sag and high bending stiffness. It is assumed that the first 20 lower eigenvalues of the lateral in-plane
motion are measured by vibration tests. From such measured frequencies, the variables supposed to be
identified are the horizontal component of cable tension force H, the flexural rigidity EI, and the axial rigidity
EA. Here, the selected initial values of the horizontal force, the flexural rigidity, and the axial rigidity are 50%,
110%, and 90% of the exact values, respectively. For convenience, the deflected static profiles of the cables are
assumed to be parabolic. For eigenvalue analyses, a linear finite element of an axially loaded beam is
developed in the MATLABs code. For each iteration step, the identified variables of Cable 1 are shown in
Fig. 2. In Fig. 2a, the terms a1, a2, and a3 denote the fractional changes in the horizontal components of cable
tension force, the flexural rigidity, and the axial rigidity, respectively. It is seen that the horizontal forces and
the axial rigidity rapidly converges while the flexural rigidity slowly converges. The reason of this slow
convergence is due to the fact that the sensitivity of the bending stiffness to the frequencies is very small
because Cable 1 has low bending stiffness. However, all the identification variables of Cable 4 have rapidly
converged to zero within 10 iterations because Cable 4 has high sag and high bending stiffness. For Cable 1,
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Fig. 2. Convergence of identification variables of Cable 1: (a) fractional changes; (b) horizontal force component; (c) bending stiffness;

and (d) axial stiffness.
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Fig. 3. Comparison of the identified natural frequencies of Cable 1.
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Fig. 3 shows the good agreements between the measured frequencies and the frequencies computed by the
finally converged variables. Also, the sag-extensibility parameters and bending stiffness parameters computed
by the identified variables are l2 ¼ 0.68 and x ¼ 605.5, respectively. These results agree well with the exact
values in Table 1.

The cable tension forces for Cable 1 estimated by the existing methods are shown in Fig. 4. For the taut
string theory (Eq. (1)) and the modern cable theory [4], the estimated tension force using the first mode yields
the relatively larger deviation from the exact tension force than the higher modes. The average errors of the
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Table 2

Estimation results of cable tension force of four cables (� 106N)

Cable no.

1 2 3 4

Exact tension 3.35 0.84 30.18 0.84

Proposed approach 3.35 (0.0) 0.84 (0.0) 30.18 (0.0) 0.84 (0.0)

String theory (Eq. (1)) 3.36 (�0.2) 0.92 (�9.2) 41.11 (�36.3) 1.21 (�43.2)

Russell et al. [4] 3.40 (�1.3) 0.70 (17.0) 31.46 (�4.3) 0.73 (13.4)

Linear regression (Eq. (2)) 3.35 (0.2) 0.83 (1.5) 30.13 (0.14) 0.83 (1.5)

Zui et al. [5] 3.17 (5.5) 0.79 (6.2) 28.34 (6.08) 0.79 (6.1)

Note: ( ) is % error.

B.H. Kim, T. Park / Journal of Sound and Vibration 304 (2007) 660–676666
estimation results of the taut string theory and the modern cable theory are only �0.2% and �1.3%,
respectively. These good results are natural because Cable 1 has moderate sag and low bending stiffness. As
shown in Table 2, however, their estimation results significantly degenerate in Cable 4 because of high sag and
bending stiffness. For the practical formula by Zui et al. [5], the error level of 6% seems to be consistent for all
cables. For Cable 1, the estimation process of the linear regression approach in Eq. (2) is shown in Fig. 5. The
first mode largely deviates from the linear regression line obtained by 20 modes. This results in 77.01% error
of the flexural rigidity computed by the slope of the regression line. However, the error of cable tension force
estimation is negligibly small. Excluding the lower five modes, the error of the flexural rigidity estimation
significantly decreases by 4.83% as shown in Table 3. The reason of this improvement is attributed to the fact
that the sag-extensibility mostly affects the lower modes. This indicates that the linear regression approach
requires the higher modes for a sagged cable.

Based on Table 2, the application of the taut string theory is very limited to cables with low sag-extensibility
and low bending stiffness. However, the taut string theory could be used as a maximum bound of cable tension
force due to a tendency of over-estimation and its practicability. For the method by the modern cable theory,
the error of the tension force estimation tends to increase as sag-extensibility and bending stiffness increase.
For the tension estimated by the linear regression approach, the error increases as a sag-to-span ratio
increases. Its accuracy is typically good if the first five lower modes are excluded. However, as shown in Table
3, the error of the flexural rigidity estimation tends to increase as the bending stiffness decreases. For the
practical formulas proposed by Zui et al. [5], the ranges of errors are around 6%. Furthermore, the resulting
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Table 3

Estimation results of bending stiffness of four cables (� 104Nm2)

Cable no.

1 2 3 4

Exact flexural rigidity 7.92 7.92 10247 284.64

Proposed approach 7.92 (0.0) 7.92 (0.0) 10247 (0.0) 284.64 (0.0)

Linear regression 8.30 (�4.8) 8.28 (�4.5) 10253 (�0.1) 278.29 (2.2)

Note: ( ) is % error.
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Fig. 5. Comparison of cable tension forces estimated by linear regression method.
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tension force tends to be underestimated. However, for all cables, the proposed approach shows the 0.0%
errors of cable tension force, the flexural rigidity, and the axial rigidity.

4. Experiments

To verify the proposed approach, an experimental verification task is conducted for a laboratory model that
scales a cable-stayed bridge. As shown in Fig. 6, the steel frame of the model consists of a column and a beam
that represent a pylon and a slab deck, respectively. To support the applied tension force, all the connections
of the frame are welded. By combing weights located below the beam, the tension force is applied to the cable.
Duplicating the boundary condition of a cable-stayed bridge, the end of the cable on the pylon side is fixed. To
reflect the sag of the cable caused by the applied tension force, a pulley is implemented on the deck side.
Without recording the impact force, the cable is excited by an impact hammer of the PCB Piezotronics Model
086C04. The acceleration time history is recorded by an accelerometer installed on the surface of the cable.
Here, the implemented accelerometer is the PCB Piezotronics Model 352B10. The data acquisition is
conducted with the combination of a Samsung computer GP12, a National Instrument 4472 Board, and self-
coded Labview software. The KISWIRE 7� 19 galvanized aircraft cable is used in this experiment. The
nominal diameter and mass of the cable are +4.76mm, and 9.67� 10�2 kg/m, respectively. The cross
sectional area and the moment of inertia of the cable are 1.05� 10�5m2 and 2.09� 10�5m4, respectively.

As shown in Table 4, the six vibration tests are repeated with respect to the various levels of applied tension
forces. For example, the cable of Test 1 has an applied tension force of 498.35N (50.85 kgf). Exciting the
stressed cable by the impact hammer, the acceleration time histories are collected through the data acquisition
system. For Tests 1–3, the acceleration time samples of 5.05� 105 are recorded for 504.99 s using the sampling
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Table 4

Applied tension force to the laboratory model

Test no. Applied weight (N) Number of modes

1 498.35 19

2 400.25 17

3 302.15 20

4 204.05 14

5 105.95 5

6 17.66 3

l

h

θ=30.59°

weight

Accelerometer

Cable

Frame

x

z

Fig. 6. Laboratory model for a cable-stayed bridge.
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frequency of 1000Hz. For Tests 4–6, the sampling frequency of 500Hz is used. A typical acceleration time
history of Test 1 is shown in Fig. 7. Using the Welch’s averaged periodogram method with the Hanning
windows, the power spectral densities of the accelerations are shown in Fig. 8. It is seen that only a few of the
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lower modes are excited in Test 6. The next step involves extracting the natural frequencies from the measured
time histories using the Pick-picking method [13]. The numbers of the extracted natural frequencies are listed
in Table 4.
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For the accurate estimation of the cable properties, the larger number of measured modes typically
guarantees the better reliability, since the proposed identification algorithm is based on L2 minimization.
However, as a rule of thumb, the sag-extensibility and bending stiffness primarily affect the lower and higher
modes, respectively.

For the extracted natural frequencies, the proposed approach is applied to estimate applied tension force.
Firstly, the initial values of the identification variables are selected. For the initial horizontal forces, the
tension forces estimated by the taut string theory are used. For the initial flexural rigidity and the initial axial
rigidity, arbitrary values have been chosen. Secondly, the sensitivity-updating algorithm is applied to all the
cases of tests. The convergence of the identification variables for Test 1 is shown in Fig. 9. Except the axial
rigidity, the other identification variables are rapidly converged within 10 iterations. However, the axial
rigidity slowly converges in this experiment. The reason of this slow convergence is due to the fact that the sag-
to-span ratio of Test 1 is almost zero due to the relatively large applied tension force. This implies that the
effect of sag-extensibility on the natural frequencies is negligibly small for Test 1. However, it is not surprising
that the axial rigidity of cable of Test 6 has been rapidly converged within 20 iterations due to a large amount
of sag. All the identified variables by the proposed approach are listed in Table 5. It is clearly observed that the
bending stiffness increases as the applied tension increases. This indicates that the shear and bending
mechanism of cable may not be the same with that of a continuum structure. For all cases, the identified
bending stiffness parameters are below 16. This result shows that the bending effect of the cable systems tested
could not be neglected. In addition, the identified sag-extensibility parameter has the wide spectrum. This
reveals that the sag-extensibility of the cables tested could not be neglected except Test 1.

For the measured natural frequencies, the existing methods are applied to estimate tension forces. As listed
in Table 6, the results by the flat taut string theory have the largest error for all cases. Hence, the taut string
theory is not acceptable for the cable system tested here. However, the estimated results by the taut string
theory could be used as the good maximum bounds of applied tension forces. For the application of the
modern cable theory proposed by Russell and Lardner [4], the first six lower frequencies are used from Test 1
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Table 6

Estimated tension forces of laboratory model (N)

Test no.

1 2 3 4 5 6

Exact tension 498.3 400.2 302.1 204.0 105.9 17.7

Proposed approach 498.4 412.1 303.8 202.7 109.5 18.1

(0.0) (3.0) (0.5) (�0.7) (3.3) (2.4)

String theory (Eq. (1)) 718.0 574.9 495.4 287.5 120.9 26.1

(44.1) (43.7) (64.0) (40.9) (14.2) (47.7)

Russell et al. [4] 531.9 440.9 320.4 229.2 120.8 11.90

(�6.7) (�10.2) (�6.1) (�12.3) (�14.0) (37.9)

Linear regression (Eq. (2)) 495.8 413.0 304.8 203.3 110.1 30.6

(�0.5) (3.2) (0.9) (�0.4) (3.9) (73.3)

Zui et al. [5] 464.9 375.0 282.8 185.6 96.7 9.9

(6.7) (6.3) (6.4) (9.0) (8.8) (43.8)

Note: ( ) is % error.

Table 5

Identified variables of laboratory model by the proposed method

Test no.

1 2 3 4 5 6

Horizontal force H (N) 429.0 354.7 261.5 174.5 94.2 15.6

Flexural Rigidity EI (Nm2) 0.73 0.67 0.58 0.51 0.44 0.28

Axial Rigidity EA (kN) 2.36 17.87 0.71 0.95 98.43 28.02

Bending parameter x 16.0 15.2 14.0 12.2 9.6 4.9

Sag parameter l2 0.09 1.25 0.12 0.56 367.1 23238.0
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to Test 4. For each test, the resulting tension forces are averaged for the six modes and listed in Table 6. For
Tests 5 and 6, the first five and three lower frequencies are used and averaged, respectively. It is seen that the
results by Russell and Lardner [4] are not very good because of the high bending stiffness of the cable tested.
Except Test 6, all the estimated tension forces by the linear regression approach have very good agreements
with the measured tension forces. Since the cable of Test 6 has the considerable sag, the occurrence of the large
error is predictable. For the approach proposed by Zui et al. [5], the error of the estimated tension forces
ranges from 6% to 9% except Test 6. For Test 6, all the existing methods have failed to predict good result.
The reason may be traced to the fact that the applied tension force is too low compared to the weight of cable.
Note that the total weight of the cable is about 11% of the applied tension force in Test 6. While the existing
methods yields considerable errors in the estimation of tension force, the proposed approach shows only about
3% error for all cases.

For the estimated flexural rigidity with respect to the applied tension forces, Fig. 10 shows the comparison
between the proposed approach and the linear regression approach. Except Test 6, the estimation results by
two approaches are very similar. For Test 6, however, the linear regression approach yields an unrealistic
minus value of the flexural rigidity. The reason of this unrealistic result is that only the first three lower
frequencies are used in Test 6. Hence, it is obvious that the linear regression approach requires higher modes
for accurate estimation of the flexural rigidity. However, the flexural rigidity estimated by the proposed
approach gives the reasonable values for all cases.

In Fig. 10, it is seen that the bending stiffness is linearly proportional to an applied tension force. One
probable explanation to support to this phenomenon lies in the peculiar mechanism of the shear and bending
in the cable structures. Unlike the fundamental engineering beam theory, the horizontal resisting shear stresses
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between strands or wires might be affected by the transverse compression caused by an applied tension force
and the accompanied sag. Consequently, the flexural rigidity of cables increases as tension force increases.

For the estimation of the axial rigidity, there exists a big difference between the proposed approach and the
theoretical axial rigidity. This result was not predicted in the previous numerical study. A probable reason is
that the sensitivity of the flexural frequencies to the axial rigidity is relatively low for the cable with high
bending stiffness. Since the convergence speed of the individual identification variable strictly relies on its
sensitivity to frequencies, each identification variable converges differently. As shown in Fig. 9, the horizontal
force H and flexural rigidity EI converge in several iterations, but the axial rigidity hardly converges. In this
case, the sensitivity of H and EI to cable frequencies is very high, but the sensitivity of EA is very low, because
the cable system on Test 1 has high bending stiffness and very low sag. Since the measured frequencies
represent the transverse motion, instead of the longitudinal motion, the identification of the axial rigidity from
such transverse modes may not be reliable if a cable system has a very low sag-to span ratio. However, in the
case of Fig. 2, the identification variables H and EA converge quickly while the flexural rigidity EI converges
slowly, because Cable 1 has low bending stiffness and moderate sag. Unlike the axial rigidity, the identification
result for the flexural rigidity is very consistent and reliable even if such slow convergence. This is because the
flexural rigidity is closely related to the transverse motion. For cables with low sag, the axial rigidity is
insensitive to the flexural frequencies. However, the axial rigidity is sensitive to the lower symmetric modes for
cables with high sag. To justify this point, the sensitivities of the cable frequencies to the axial rigidity with
respect to the various sag-to-span ratios have been investigated. The horizontal cable parameter investigated
here are H ¼ 2.9036MN, E ¼ 15.988GPa, A ¼ 7.8507� 102m2, x ¼ 605.5, y ¼ 01, and L ¼ 100m, which are
similar to Cable 1 in Table 1. As shown in Fig. 11, the sensitivities of the symmetric modes (the 1st, 3rd, and
5th mode, etc.) are sensitive to the axial rigidity when the sag-to-span ratio larger than about 0.02. It is
observed that the anti-symmetric modes (the 2th and 4th mode) are completely insensitive to the axial rigidity.
Also, the modal crossovers are observed around the sag-to-span ratios of 0.06 and 0.1.

It is also emphasized that the inclusion or the exclusion of the axial rigidity EA in the identification strategy
does not affect on the accuracy of tension force identification. Furthermore, the identification error of the
axial rigidity EA does not deteriorate the identification accuracy of cable tension force. For cables with high
sag, the correct identification of the axial rigidity EA is expected due to the high sensitivity to the lower
symmetric modes. For cables with low sag, the identification error of EA does not affect the accuracy of the
other identification parameters of H and EI because of the insensitivity itself to the frequencies in the proposed
algorithm. To estimate the accurate axial rigidity from such bendable cable, the measurement of the axial
frequencies may be necessary.
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5. Field application

The Seohae cable-stayed bridge, built in 2000, is one part of the 7.31 km-long Seohae bridge across Asan
bay on the expressway linking Incheon and Mokpo along West Coast in Korea. As shown in Fig. 12, the
cable-stayed bridge is 990m long and it has total 144 stay cables. Since the bridge is the doorway of Pyung-
taek harbor, it has a clearance of 62m high and 470m wide for the navigational requirements. For the on-line
heath monitoring of the cables, the 24 accelerometers are attached to the specific cables [14]. The total four sets
of time history data collected from the No. 1 and No. 44 cables are considered here. The cable No. 1 is the
longest cable and is weak from vibration. The horizontal length, the height, the self-weight, and the angle of
cable inclination of the cable No. 1 are l ¼ 200.68m, h ¼ 110.03m, w ¼ 1226.25N/m and y ¼ 27.741,
respectively. It is reported that the time history data collected from the cable No. 44 has the worst quality. The
horizontal length, the height, the self-weight, and the angle of cable inclination of the cable No. 44 are
l ¼ 131.31m, h ¼ 90.57m, w ¼ 794.61N/m, and y ¼ 33.221, respectively. The cross sections of the cable No. 1
and No. 44 consist of the 91 wires with + ¼ 0.0157m, the 61 wires with + ¼ 0.0157m, respectively. For the
wind excitation (average velocity of 4.23m/s), the acceleration time responses of cables are obtained by
piezoelectric-type accelometers with the sampling rate of 0.01 s for 10min. The typical power spectrum density
(NFFT ¼ 2048, Hanning window) of the cable No. 1 for the Inchon direction is shown in Fig. 13. The lower
30 and 20 modes of the cable No. 1 and No. 44, respectively, are extracted by the TDD (Time Domain
Decompositon by Kim et al [15]) and the ERADC (Eigen-System Realization Algorithm with Data
Correlation by Juang [16]) techniques. Normally speaking, those statistical modal parameter estimation
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methods significantly reduce uncertainty on the estimation of modal parameters, compared to the Pick-picking
method. Here, the first lower modes of the cable No. 1 and No. 44 were not measured.

The proposed frequency-based system identification technique is applied to the extracted natural
frequencies with a linear finite element cable model. The solution of sensitivity equation is obtained through
the iteration method starting from arbitrary assumed initial values. As shown in Fig. 14, all the identification
variables are converged through 3000 iterations. The estimation results using the proposed approach are listed
in Table 7. For the case of the identified bending parameters, a large variation is observed, compared to that of
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Table 8

Estimated tension forces of Seohae Grand Bridge (MN)

Cable no.

Cable 1 Cable 44

Direction of lane Inchon Mokpo Inchon Mokpo

Proposed approach 5.58 5.51 5.22 5.25

String theory (Eq. (1)) 5.59 5.53 5.23 5.25

Russell et al. [4] 5.68 5.62 5.40 5.42

Linear regression (Eq. (2)) 5.57 5.51 5.23 5.28

Zui et al. [5] 5.46 5.41 5.12 5.14

Static tensioning Jack 5.64 5.61 5.31 5.19

Table 7

Identified variables of Seohae Grand Bridge by the proposed method

Cable no.

Cable 1 Cable 44

Direction of lane Inchon Mokpo Inchon Mokpo

Horizontal force H (MN) 4.89 4.83 4.37 4.39

Flexural rigidity EI (� 104Nm2) 9.31 25.54 18.62 0.45

Axial rigidity EA (N� 107) 2.84 1.73 1.10 1.11

Bending parameter x 1455.3 873.1 800.5 4313.9

Sag parameter l2 0.0147 0.0093 0.0021 0.0017
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the identified horizontal force. The reason is due to the fact that the sensitivity of the tension force to the
frequencies is relatively larger than that of the flexural rigidity. The partial evidence is that all the identified
bending parameters are larger than 800. Furthermore, all the identified sag-extensibility parameters are nearly
zero. Hence, the cable No. 1 and No. 44 could be classified as a cable system with small sag and low bending
stiffness (Fig. 14).

For the extracted natural frequencies of Cable 1 and Cable 44, the aforementioned existing methods are
applied. The estimated average tension forces are summarized in Table 8. The last row in Table 8 shows
tension force measured by a tensioning hydraulic jack at August in 2000 [14]. Here, the difference of tension
force between the deck side and the pylon side is about 2%. Unlike the results of the previous laboratory test,
all the estimated tension forces show very good agreements. This is because the cable system considered here
has very small sag and low bending stiffness due to the high level of tension force.

6. Summary and conclusions

The objective of this work is to introduce a new approach to estimate the cable tension forces from the
measured frequencies. To achieve this objective, the following five basic steps were performed. First, the
existing vibration-based tension estimation methods were classified as four categories, and their theoretical
backgrounds were revisited. Second, the frequency-based system identification algorithm was presented in
order to identify cable tension forces from measured frequencies. Third, the proposed approach was
numerically verified using four case studies. The numerical study examined the effects of the sag-extensibility
and bending stiffness on the performance of the proposed approach. Forth, the proposed approach was
experimentally verified using a laboratory model. Finally, a feasibility study to data collected from Seohae
cable-stayed bridge was presented.
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Based on results and interpretations, the following five conclusions can be made. First, the cable tension
forces estimated by the taut string theory and the modern cable theory are unreliable for the cables with high
bending stiffness. However, the proposed method is capable of estimating the reliable tension forces for such
bendable cables. Second, the reliable estimation of cable tension force by the linear regression approach
requires the higher modes for a large sagged cable. This restriction could be an obstacle to estimate tension
force if the higher modes of a cable could not be excited. However, the proposed method is able to reliably
estimate the tension forces using only a few of lower modes. Third, unlike the methods using the practical
formulas involving the sag-extensibility and bending stiffness, the proposed method does not require any
priori knowledge about bending stiffness, axial rigidity, sag-to-span ratio, and unstrained length of cable.
Fourth, the proposed approach could be applied to any cable system whose closed form solution is not
available by virtue of utilizing the finite element analysis. Fifth, the bending stiffness of cables could be linearly
proportional to the applied tension forces. This finding is not originally intended to be unveiled in this study.
The detailed investigation of this phenomenon remains to be done.
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